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A B S T R A C T   

This first-of-its kind study categorizes the residential customer base of Illinois’ largest electric utility, 
Commonwealth Edison, into slices of customer-usage profiles to determine their marginal Greenhouse Gas 
emissions for the period 2016−2018. The analysis utilizes anonymous energy-usage data from Advanced 
Metering Infrastructure, PJM marginal emissions data, and demographic data from the U.S. Census Bureau’s 
American Community Survey of 2017. Using a machine-learning algorithm called k-means clustering, the 
analysis identifies distinct usage patterns of residential customers and once again proves the value of access to 
anonymous AMI data. Even more importantly, the results provide new evidence to inform regulators, consumer 
advocates, policymakers and utilities on how best to customize energy efficiency, weatherization, customer 
education, and demand response programs for maximum benefit.   

1. Introduction 

Many U.S. states and cities have recently announced efforts to 
decarbonize the electric grid and pursue a path toward 100 % clean, 
renewable energy.1 Achieving these clean energy goals requires a 
thorough understanding of how electricity is currently used. Although 
the electric grid in the United States is gradually becoming cleaner 
overall, Greenhouse Gas (GHG) emissions caused by electricity con-
sumption vary depending upon the time of day and season. Reducing 
climate pollution, then, depends not only on continuing to decarbonize 
the generation mix, but also on encouraging electricity usage when 
cleaner resources are on the margin and discouraging usage when the 
reverse is true. 

In ‘Six unique load shapes: a segmentation analysis of Illinois resi-
dential electricity consumers, we used a k-means clustering algorithm to 
identify distinct summer electricity consumption patterns among resi-
dential customers.2 These summer load profiles ranged from usage that 

was nearly flat to usage that was significantly peaky, with flatter load 
shapes substantially more likely to be prevalent in urban areas and low- 
income communities. This paper builds upon our previous analysis to 
examine the marginal emissions of different clusters. 

We begin by using Advanced Metering Infrastructure (AMI) usage 
data to repeat our k-means cluster analysis on ComEd residential electric 
customers, but we include full-year consumption data (not just summer 
months). We calculate each customer’s kilowatt-hour (kWh) usage 
above or below the residential average for each hour of the period 
2016−2018. We then use PJM Interconnection historical emissions data 
to estimate the carbon emissions for each customer compared to the 
overall average.3 

We find substantial differences in marginal GHG emissions produced 
by the six distinct load shape clusters. Average annual household 
emissions between clusters ranges from -1.7 to 0.69 metric tons equiv-
alent carbon dioxide (MTCO2e). Total annual cluster emissions range 
from -97,885 to 133,569 MTCO2e, a difference of 231,454 MTCO2e, 

Abbreviations: AEF, average emissions factors; AMI, advanced metering infrastructure; ComEd, Commonwealth Edison; CUB, Citizens Utility Board; GHG, 
greenhouse gas; kWh, kilowatt-hour; MEF, marginal emissions factors; MTCO2e, metric tons equivalent carbon dioxide. 

* Corresponding author. 
E-mail address: jzethmayer@citizensutilityboard.org (J. Zethmayr).   

1 States that have made a 100% clean energy commitment include: California, Hawaii, Washington, New Mexico, Virginia, New York, New Jersey, Massachusetts, 
New Mexico, and Maine. Cities include: Atlanta, Chicago, Denver, Kansas City, Los Angeles, Louisville, Milwaukee, Minneapolis, Orlando, Philadelphia, Portland, San 
Francisco, San Diego, and St. Louis.  

2 Zethmayr and Makhija, “Six unique load shapes: A segmentation analysis of Illinois residential electricity consumers.”  
3 Marginal emissions rates come from WattTime, 2021 
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equivalent to 8.7 % of the estimated annual emissions for all customers 
in the study.4 

2. Data 

This study uses two datasets: residential AMI data from ComEd and 
PJM marginal emissions data. Using the AMI data, we run a k-means 
clustering analysis to identify distinct usage patterns of residential 
customers for the years 2016−2018. Once customers are assigned to a 
cluster, we then combine hourly usage with the marginal emissions data 
to calculate the marginal emissions impact of each cluster. 

ComEd’s residential AMI data became available in 2017 after the 
Illinois Commerce Commission—the state regulatory body for utili-
ties—approved a plan for Illinois utilities to make customers’ usage 
history available to third parties in an anonymous format. The dataset 
includes daily observations of half-hour kWh usage for individual 
households identified by subclass and location at the 9-digit ZIP code 
level.5 Because ComEd did not achieve full AMI deployment until 2019, 
the number of customers included in each monthly dataset increases 
over time. The average monthly number of households included in this 
study increases from 472,348 in 2016 to 696,538 in 2018 (Figs. 1–5, 
7–9, 11, 13, 14). 

The emissions data contain the hourly emission rate, in MTCO2e per 
kWh, of the marginal generator in the PJM power stack for each hour of 
the years 2016−2018.6 

3. Theory and method 

When determining the efficacy of policies such as electrification on 
reducing climate pollution, it is essential to examine the impact on 
marginal rather than just average emissions, as it is the marginal gen-
eration unit that determines emission levels at any point in time.7 

Without a proper understanding of marginal emissions factors (MEF), 
policy interventions could lead to suboptimal outcomes. Kaatz and 
Anders (2016) conclude that allocating emissions based solely on 
average emissions factors (AEF) ignored the role of “unspecified power,” 
and that more accurate models were needed.8 The importance of 
analyzing marginal emissions has been confirmed by multiple studies. 
Siler-Evans et al. (2012), for example, compare marginal emission fac-
tors to AEFs in the United States, and find that AEFs likely misconstrue 
the impact of policy interventions.9 Marnay et al. (2002) find that 
“differentiating between marginal and average emissions is essential” 
for gauging the impact of energy efficiency and demand response pol-
icies in California and that focusing on AEF “could drastically misesti-
mate an entity’s emissions due to the large differences in generating 

resources among the service areas.”10 Similar conclusions are reached 
by Hawkes, Gordan and Fung, Farhat and Ugursal, and Finenko and 
Cheah (2016) for energy systems around the world, including Canada, 
the United Kingdom, Singapore, and Japan.11,12,13,14 

Achieving a better understanding of marginal emissions, then, is 
crucial for designing least-cost and maximally effective policy solutions 
aimed at reducing greenhouse gas and other criteria air pollution 
emissions in the electricity sector. In this paper, we use newly-available 
AMI usage data to estimate marginal emissions contributions from res-
idential electricity consumption in the ComEd service territory. 

To compare the marginal emissions results of different load shapes, 
first we sort residential customers into clusters based on their usage 
patterns. A household’s usage in each hour is then compared to the mean 
usage for all customers in that hour, to calculate that household’s 
amount of consumption above or below average – their marginal usage 
for that hour. We then apply the hour’s emissions rate, as determined 
from PJM dispatch data, to the customer’s marginal usage to determine 
their marginal emissions. These results are then aggregated for each 
usage cluster. 

Our analysis relies on a machine-learning algorithm called k-means 
clustering, which is an unsupervised learning algorithm that assigns 
observations into subsets by minimizing the variance between those 
individual observations. The algorithm generates sets of cluster assign-
ments for all observations with randomized centroids, and repeats this 
process until it produces an optimal set with minimal intra-cluster 
variance. Rather than defining groups beforehand, clustering allows us 
to identify organically formed groups and potentially determine hidden 
relationships in the dataset. In recent years, researchers have applied 
new data mining and statistical techniques to characterize consumer 
profiles according to their consumption patterns.15,16 From our review 
of the literature on customer segmentation, we selected the k-means 
clustering method for this analysis.17 Once a customer has been assigned 
to a cluster, the next step in this analysis is to determine how much of a 
household’s usage is marginal in each hour. As the marginal emissions 
rate applies to an additional kWh of usage, it would be incorrect to apply 
that rate to a customer’s total consumption in a given hour; the bulk of 
usage would be produced by infra-marginal generators. For the purposes 
of this study, we define individual marginal consumption as the kWh a 
household consumes above or below the residential average. 

After calculating individual hourly marginal consumption for each 
hour of the three-year timespan, we multiply those values by each hour’s 
emissions rate, to calculate individual hourly marginal emissions. To 
calculate the average individual marginal emissions, we sum up the 
monthly marginal emissions for each cluster and divide them by the 
cluster population for that month. We then estimate total cluster 

4 This is equivalent to the annual emissions of 49,990 automobiles.  
5 ComEd divides residential customers into four separate subclasses: single 

family homes without electric space heat (SFNH), single family homes with 
electric space heat (SFH), multi-family units (where a building contains more 
than four units) without electric space heat (MFNH), and multi-family units 
with electric space heat (MFH).  

6 Marginal emissions data was acquired from WattTime, “WattTime V2 API”.  
7 For a useful primer see, Mandel (2016), “Combating Climate Change by 

Measuring Carbon Emissions Correctly.” On the importance of marginal emis-
sions also see, Greenhouse Gas Protocol (2020), “Greenhouse Gas Protocol”.  

8 Kaatz and Anders (2016), “The role of unspecified power in developing 
locally relevant greenhouse gas emission factors in California’s electric sector.” 
Also see, Levin (2019), “Rate design for a decarbonizing grid”. 

9 Siler-Evans et al. (2012), “Marginal Emissions Factors for the U.S. Elec-
tricity System”. 

10 Marnay et al. (2002), “Estimating Carbon Dioxide Emissions Factors for the 
California Electric Power Sector.” Also Kaatz and Anders (2016), “The role of 
unspecified power in developing locally relevant greenhouse gas emission 
factors in California’s electric sector.” and Levin (2019), “Rate design for a 
decarbonizing grid”.  
11 Hawkes (2010), “Estimating marginal CO2 emissions rates for national 

electricity systems”.  
12 Gordon and Fung (2009), “Hourly Emission Factors from the Electricity 

generation sector-A tool for analyzing the Impact of renewable technologies in 
Ontario”.  
13 Farhat and Ugursal (2010), “Greenhouse gas emission intensity factors for 

marginal electricity generation in Canada”.  
14 Finenko and Cheah (2016), “Temporal CO2 emissions associated with 

electricity generation: Case study of Singapore”.  
15 For more information, see McLoughlin et al. (2015), “A clustering approach 

to domestic electricity load profile characterization using smart metering data”.  
16 Figueiredo et al. (2005), “An electric energy consumer characterization 

framework based on data mining techniques”.  
17 Al-Wakeel and Wu (2016), “K-means Based Cluster Analysis of Residential 

Smart Meter Measurements”. 
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emissions for 2016 and 2017 by multiplying cluster average emissions 
by each month’s 2018 cluster populations. 

4. Results 

4.1. Cluster analysis 

The results of our cluster analysis using annual data are similar to our 
previous analysis using only summer data.18 The largest group, Cluster 
1, has the highest average volume, with a consistent evening peak. 
Cluster 2 has consistently flat usage, with average volume. Cluster 3 has 
a higher and earlier peak, with volume close to the residential average. 
Cluster 4, 5, and 6 have below average volume, with Cluster 4 exhibiting 
low daytime usage with a late evening peak, and Clusters 5 and 6 

showing morning and evening peaks, with Cluster 5’s evening peak 
reaching a significantly higher level. 

4.2. Demographic analysis 

Our demographic analysis reveals a number of marked differences 
between the different usage clusters. Figs. 6 through 9 show which 
clusters are most prevalent in each location, and Fig. 10 shows the raw 
demographic composition of each cluster. 

4.2.1. Cluster 1: “Jo Suburban” 
As with our previous residential cluster analysis, Cluster 1 was used 

as the basis of comparison for the purpose of logistic demographic 
regression. This is primarily because this cluster has the largest popu-
lation, and exhibits an average load shape closest to the overall load 
shape of ComEd residential customers. These customers exist 
throughout the study’s geographic footprint, though are particularly 
prevalent in the Chicago suburbs; compared to Cluster 1, every other 

Fig. 1. Cluster Load Shapes, in Percentage of Maximum Load.  

Fig. 2. Average Cluster Weekday Load Shapes.  

18 Zethmayr and Makhija (2019), “Six unique load shapes: A segmentation 
analysis of Illinois residential electricity consumers”. 
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cluster is less likely to live in those suburbs. They are also the most likely 
cluster to live in housing units worth greater than $105,000, and in low- 
density areas. 

4.2.2. Cluster 2: “Flat City” 
Cluster 2 customers are significantly more likely than average to live 

within the Chicago city limits and to earn less than $50,000 per year.19 

Interestingly, they are also the most likely cluster to earn more than 

$150,000 per year. This cluster includes the customers most likely to 
hold less than a high school degree, while also including those highly 
likely to hold a graduate or professional school degree. These results 
suggest this load shape is driven by location and housing type; i.e., these 
customers’ comparative demographic profile largely reflects the differ-
ence between Chicago residents and the rest of Northern Illinois. These 
customers are more likely than average to be less than 33 years of age, 
and less likely than average to be greater than 56 years of age (1.2 times 
[x] and 0.7x, respectively). This cluster also contains the highest con-
centration of electric space heat customers, as identified by subclass, 
with 6.7 % of these customers belonging to that subclass. 

4.2.3. Cluster 3: “Exurban Empty Nesters” 
Cluster 3 customers are significantly more likely than average to live 

in exurban and rural locales (1.5x and 1.3x, respectively), and slightly 
more likely to be over 56 years in age, at 1.4x versus the average 
customer. They are also relatively likely to consist of two-person, fa-
milial households, and unlikely to be families of five or more (1.2x and 
0.8x, respectively). 

Fig. 3. Average Summer Weekday Load Shapes.  

Fig. 4. Average Winter Weekday Load Shapes.  

Fig. 5. Cluster Populations by Year.  

19 Customers in Cluster 2 are 2.2 times (x) more likely to live in Chicago, 2.6x 
more likely to earn less than $50,000 per year. 
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4.2.4. Cluster 4: City Duck Curve 
Cluster 4 customers are the most likely to be less than 33 years of age, 

and least likely to be greater than 56 years of age (1.4x and 0.4x, 
respectively). They are mostly likely to hold a graduate or professional 
degree, and it is highly unlikely they will live in exurban or rural locales 
(0.7x as likely as average for both categories). 

4.2.5. Cluster 5: Exurban Commuters 
These customers are the least likely to be low income—0.8x as likely 

as the average customer to earn less than $50,000 per year. They are also 
less likely to live in Chicago, and more likely to live in exurban locations 
(0.7x and 1.3x, respectively). They are also the most likely cluster to 
hold a bachelor’s degree, and highly likely to hold a graduate or pro-
fessional degree (1.4x versus average for both measures). 

4.2.6. Cluster 6: Small City Apartment Dwellers 
Cluster 6 includes the smallest population of customers and there are 

only a few significant demographic differences from the average. Cus-
tomers in this cluster are most likely to have fewer than four rooms in 
their home and the least likely to have greater than five rooms (1.6x and 
0.3x as likely as the average customer, respectively). They are also 
highly unlikely to live in Chicago, and more likely than average to live in 
exurban locales. This cluster contains the second highest concentration 
of homes with electric space heat, with 12.8 % of customers belonging to 
the two space heat subclasses. 

4.3. GHG analysis 

The variations in cluster load shape lead to markedly different levels 
of marginal emissions and reveal seasonal differences in usage patterns. 
During every month of the year, Cluster 1 (“Jo Suburban”) has above 
average marginal emissions, peaking at 0.11 MTCO2e in July. Clusters 2 
(“Flat City”) and 4 (“City Duck Curve”) have above average emissions in 
the winter, and then dip below average in the summer. Cluster 3 
(“Exurban Empty Nesters”) customers have below average winter 
emissions, but spike in the summer, nearly matching Cluster 1 cus-
tomers’ July peak at 0.1 MTCO2e. Cluster 5 (“Exurban Commuters”) 
customers show little variation compared to the mean, consistently 
causing slightly lower emissions than average, with slight spring and fall 
peaks. Cluster 6 (“Small City Apartment Dwellers”) customers have 
consistently low marginal emissions, reaching a low of 0.26 MTCO2e 
below average in July. 

Over the course of a year, these monthly differences add up. Fig. 12 
shows the cumulative marginal emissions of an individual cluster 
member through the months of the calendar year. By May, a typical 
Cluster 2 customer will have 0.29 MTCO2e higher marginal emissions 
than average; however, this value reduces close to zero by September, 
then rises throughout the fall, until they show emissions of 0.17 MTCO2e 
above average for the year. Cluster 3 shows the opposite trend: by May, 
the average Cluster 3 member has caused 0.31 MTCO2e less emissions 
than average, which rises to near zero over the course of the summer, 
and goes back down during the fall. Cluster 4 members caused average 
emissions that were slightly above average through the early spring, but 
by the end of the year show 0.63 MTCO2e less emissions than average. 

Fig. 6. Full Study Area Map.  
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Cluster 1, 5, and 6 members show steady trends in this value over the 
year, with average Cluster 5 and 6 customers causing 0.41 and 1.75 
MTCO2e below-average emissions by the end of the year, and Cluster 1 
members causing 0.67 MTCO2e above average. 

When these individual results are combined to show emissions for 
the clusters as a whole, we see the cumulative impact of individual load 
shapes. Cluster 1, with both the highest population and the highest 
marginal emissions rate, peaks at +22,072 MTCO2e in monthly marginal 
emissions in July, with a cumulative annual total of +133,569 MTCO2e, 

equivalent to 5% of the estimated annual emissions of all customers in 
the study. Cluster 2 sees its cumulative marginal emissions peak in April 
at +36,804 MTCO2e, but finishes the year with a cumulative +21,359 
MTCO2e. Cluster 3 peaks in monthly emissions, with +9,789 MTCO2e, in 
July, but finishes the year -13,702 MTCO2e below average. Clusters 4, 5, 
and 6 finish the year with -52,994 MTCO2e, -58,006 MTCO2e, and 
-97,885 MTCO2e below average marginal emissions, respectively. 

Fig. 7. Chicago Area Cluster Map.  
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4.4. Effects of electric space heat 

Clusters 2, 4, and 6 contain the three highest concentrations of space 
heat subclass customers, at 6.7 %, 7.4 %, and 12.8 %, respectively, with 
distinctly different annual emissions profiles. Fig. 15 shows the average 
winter weekday load shape of electric space heat customers by cluster. 

Space heaters in Clusters 2 and 4, the two clusters that exhibit above- 
average marginal emissions in the winter and lower emissions in the 
summer, have significantly higher overnight usage than space heaters in 
other clusters, with cluster 4 customers exhibiting a sharp drop in the 
middle of the day. Space heaters in Cluster 6, however, have relatively 
low overnight usage, with high morning and evening peaks. 

A look at the demographic profiles of these customers suggests a 
potential reason for these disparities. Cluster 2 and 4 customers are the 
two groups both most likely to live in Chicago, and most likely to live in 
housing units 70 or more years old. They are also the two most likely 
groups to earn less than $50,000 a year. Cluster 6 customers, in contrast, 
are the least likely to live in Chicago, highly likely to live in an exurb, 
and unlikely to earn less than $150,000 a year. This suggests housing 
stock may be a large driver of the load shape difference. Space heat 
customers in older dwellings with poorer insulation require significantly 
more energy to maintain comfortable temperatures overnight, while 
newer exurban homes retain their heat better. Given the similar de-
mographic profiles of Cluster 2 and 4 customers, and their distinct 
winter load shapes, the primary difference may be that Cluster 4 homes 

are unoccupied during the middle of the day (and thus less heated), 
whereas Cluster 2 homes are occupied throughout the day. 

These results highlight the potential emissions reductions that could 
be achieved through weatherization and customer education measures. 
If all Cluster 2 space heat customers were to adjust their winter load 
shape to match that of Cluster 4 space heat customers, this would result 
in a 12,817 MTCO2e reduction in annual emissions, equivalent to taking 
2,768 cars off the road.20 While there are likely structural obstacles, 
such as building type, if all Cluster 2 and 4 space heat customers were to 
adjust their winter load shape to match Cluster 6 space heat customers, 
this would lead to a 20,165 MTCO2e reduction, or 4,355 cars off the 
road.21 The first of these interventions would depend on customer ed-
ucation efforts; the latter reduction would require both customer edu-
cation and weatherization programs. 

5. Conclusion 

The load shape of a residence is influenced by structural factors such 
as housing size and type, and household makeup. We have found that 

Fig. 8. Aurora Area Cluster Map.  

20 U.S. Environmental Protection Agency (2021a,b), “Greenhouse Gases 
Equivalencies Calculator - Calculations and References”.  
21 These estimates are based on the cluster populations included in this study; 

results for the rest of the ComEd service territory would be significantly higher. 
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within these sub-groups, clusters of customers with similar dwelling unit 
characteristics and in similar age and income brackets have load shapes 
with significantly different emissions outcomes. Therefore, efforts to 
shrink residential GHG emissions must focus on reducing consumption 
at times when a customer’s marginal emissions are highest. Customer- 
facing programs and messaging should be tailored to fit different 
household load shapes. 

The usage characteristics of each cluster suggest differentiated en-
ergy management strategies to harvest the “low-hanging fruit” of 
emissions reductions. For example, Cluster 1 customers, who make up 
the largest single cluster, exhibit similar typical load shapes as Cluster 3 
customers and are prevalent in the same geographic areas. However, 
Cluster 1 customers average 0.8 MTCO2e more annual emissions 
because of higher usage during both winter and summer peak periods. 
This suggests that an effective Cluster 1 strategy might focus on summer 

Fig. 9. Rockford Area Cluster Map.  

Fig. 10. Cluster Composition.  

Fig. 11. Average Individual Marginal Emissions by Month.  Fig. 12. Cumulative Individual Marginal Emissions by Month.  
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peak reduction using pre-cooling and direct load control measures, 
behavioral incentives such as peak time rebate programs and time- 
variant pricing, and customer education targeted at lowering over-
night usage. Bringing Cluster 1 peaks down to average would reduce 
ComEd residential electric emissions by 162,017 MTCO2e, or 1.8 %, and 
would create a more efficient and lower cost system load shape. 
Extrapolating this result to the entire ComEd residential class, assuming 
these customers occur with the same frequency, the total savings would 
be 494,888 MTCO2e – 5.5 % of total residential emissions, and the 
equivalent of taking 106,887 cars off of the road. 

Cluster 2 customers, while largely co-located and of similar age and 

income brackets as Cluster 4 customers, have load shapes that result in 
0.8 MTCO2e higher annual emissions. Because the bulk of these mar-
ginal emissions occur during the winter, weatherization programs tar-
geted towards these customers are likely to yield emissions reductions. If 
all Cluster 2 customers were able to adjust their usage to match the 
Cluster 4 load shape, this would result in a 100,676 MTCO2e drop in 
emissions, equivalent to 1.1 % of ComEd residential emissions. Extrap-
olating these results to the entire ComEd residential class, this would 
result in a 249,856 MTCO2e reduction – 2.8 % of total residential 
emissions, and the equivalent of taking 53,965 cars off the road. 

The urgency of combating global warming demands effective and 
immediate action in all economic sectors, including electricity genera-
tion, which accounts for 27 % of carbon emissions.22 Global greenhouse 
gas emissions must drop by 7.6 % annually over the next decade to avoid 
the worst effects of climate change, according to the United Nations 
Emissions 2019 Gap Report.23 That reduction target may be reached in 
2020 due to the negative economic effects of the COVID-19 pandemic, 
but the longer term emissions vectors continue to point up, not down.24 

While commercial and industrial electricity demand temporarily 
plummeted during Illinois’ mandate COVID-19 stay-at-home period, 
residential usage increased.25 If more working at home becomes a long- 
term trend in the recovering U.S. economy, usage patterns may change, 
due to factors such as higher daytime residential air-conditioning de-
mand and lower growth in electric vehicle charging. Future studies will 
monitor the effects of evolving usage patterns and load-shaping efforts 
on the clusters we have identified and compare them over time to the 
baseline data established in this study. 

Funding 

A grant from Energy Innovation helped fund this research. 

Fig. 13. Average Cluster Marginal Emissions by Month.  

Fig. 14. Cumulative Cluster Marginal Emissions by Month.  

Fig. 15. Average winter usage by space heat customers.  

22 U.S. Environmental Protection Agency (2021a,b), “Global Greenhouse Gas 
Emissions Data”.  
23 United Nations Environment Programme (2019), Emissions Gap Report 

2019.  
24 International Energy Agency (2020). Global Energy Review 2020. 
25 See Hinson (2020), “COVID-19 is Changing Residential Electricity De-

mand.” Also Englund (2020), “See how covid-19 is reshaping the electric 
rhythms of New York City.” 
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